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Abstract:

The use of artificial intelligence (Al) in biomedical imaging genomics has amplified the rate of precision medicine
since it allows an automatic analysis of data that are complex and high dimensional. Nevertheless, the potential
dangers of algorithm bias exist in correlation with these improvements due to training data imbalances,
heterogeneity of the population, and the technicalities of imaging or genomic collection. This type of bias may
have discriminating consequences and undermine the reliability and ethical application of Al in the clinical
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context. This paper advances a dynamically adaptable explainable AI (XAI) model by providing a way of
balancing exploration while having a capacity to dynamically update its decision pathways without losing
transparency or interpretability. The model also makes use of multi-modal data fusion approaches, dimensionality
reduction prior (e.g. autoencoders and t-SNE), bias-sensitive optimization layers to maximize generalization
across different populations. Methods to explain explainability entail SHAP, LIME and Grad-CAM to reveal the
model rationale both on genomic markers and on imagery features. We show through publicly available high-
dimensional datasets that our approach is effective and helps greatly to improve fairness metrics without loss on
predictive ability. This is work not only fills crucial knowledge gap in the biomedical Al research but also
establishes basis toward the introduction of explainable and ethical decision-support tools in genome-based
diagnostics.

Keywords: Adaptive Al, Explainable Artificial Intelligence (XAI), Biomedical Imaging, Genomics, Bias
Mitigation, High-Dimensional Data, Fairness, SHAP, Deep Learning, Multi-Modal Analysis

I. INTRODUCTION

Biomedical imaging genomics is a cross disciplinary area, which integrates radiological imaging methodologies
like MRI, CT, and PET with genetic data to comprehend the disease process, stratification of patients, and
subsequently increase the accuracy of clinical judgements. The combination of the types of data creates a physical
space of a fantastically high dimension in which phenotypic groups of the complex of traits consisting of molecular
signatures are arranged. Artificial intelligence (AI) frameworks, in particular deep learning frameworks, and
networks, have shown impressive results in discovering patterns in such data, anticipating the outcome of disease,
and helping arrange diagnoses and therapeutic planning. Yet, alongside with growing rate of Al application, there
also emerges the set of critical challenges related to algorithmic fairness, interpretability, and reproducibility,
which are especially evident in high-dimensional and heterogeneous environments of biomedical data. Among
the most urgent issues related to biomedical Al applications is algorithmic bias a built-in tendency in a model to
deviate from its predictions in some specific subgroups (this may depend on race, gender, age, or socio-economic
background, to name a few). The bias in the context of imaging genomics does not have a single cause, and it can
be introduced by several factors, such as the unevenness of data representation among cohorts, non-standardized
data acquisition protocols, population-specific genetic variations, or linguistic associations created during the
feature selection stage, model fit, and evaluation. As an example, an overtrained convolutional neural network
(CNN) based on MRI scans of a mainly European ancestry population could fail when applied to patients of Asian
or African origin, not because of architecture weaknesses, but because of insufficient representation and
phenotype-genotype discontinuance in the training samples. Such biases detract not only the clinical applicability
of Al models, but also present ethical concerns as well as questions relating to regulatory complications, especially
once such tools are introduced in different healthcare systems. To make matters worse, deep learning models have
a black box problem. Even though these architectures perform well on capturing nonlinear relationships in high
dimensional data they are however not transparent on how they make their decision process. This nebulosity has
left a "trust gap" among clinicians, radiologists, and geneticists who need to comprehend what is stated by the
model and learn to confirm the predictions prior to implementing them into patient care processes. Explainable
AI (XAI) has emerged to narrow this disparity by providing mechanisms and models to explain and present the
inner-workings of an Al system. In imaging genomics, it might imply the genomic characteristics or image areas
primarily affecting which decision a model makes to decide that this tumor is malignant or will respond to
treatment. Unfortunately, current XAl approaches are not dynamic, post hoc i.e. they cannot be applied during
model training and they fail to adjust to unfamiliar data distributions or pre-processing requirements in terms of
fairness. Thus, they might not take into consideration underlying dynamics of bias or be able to explain
consistently within subpopulations. The paper suggests a new adaptive eligible explainable Al pledge suited
precisely to bias reduction in high-dimensional biomedical imaging genomics. In contrast to the conventional XAl
strategies, our framework treats explainability as a dynamic, built-in part of architecture and learning. It is able to
adjust to changes in input distributions, adapt to the explanation requirements of individual subgroups and
incrementally adjust its parameters to both reduce prediction error and to reduce fairness disparity. It has modular
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architecture; the components— post-hoc reasoning (shapley additive exPlanations: SHAP and Local Interpretable
Model-Agnostic Explanations: LIME) can be paired with feature compression (autoencoders) and bias-penalized
loss functions to facilitate equal performance across demographic and clinical groups. Driving force behind the
creation of adaptive XAl system is understanding that bias and interpretability are not orthogonal issues but rather
an intertwinement of trustworthy Al. The combination of interpretability and bias in a model can be misguiding
to the clinicians as it provides justifiable but unjust reasons. However, on the other hand, an explainable non-fair
model would still be hard to validate and improve. Hence, a synergistic balance is sought-that is, a model that is
not only equitable and transparent, resistant to the competition between heterogeneous individuals, and can be
executed clinically. We also followed the principle of continuous improvement of knowledge in the biomedical
field in our approach since biomedical data is not fixed. The requirements that Al systems now meet include new
imaging technologies, changing profiles of diseases, and growing size of genomic data that requires systems
capable of refreshing their internal codes and explanation approaches dynamically. In order to verify our
methodology, we are utilizing the multi-cohort, high-dimensional data sets like The Cancer Genome Atlas
(TCGA) and Alzheimer Disease Neuroimaging Initiative (ADNI), which provide an abundant resource of
genomics sequences and radiology images. We test our models on regular classification and regression tasks, i.e.
predicting the survival, tumor grade, disease progression etc. and measure performance with both standard (e.g.
AUC, accuracy) and fairness-sensitive (e.g. disparate impact, equalized odds) indicators. We are also doing
ablation studies to understand how important each of our entire components-dimensionality reduction, bias loss
adjustment, and explanation modules to the system wide performance. Summing up, the paper fills an essential
and opportune gap in biomedical use of Al: the concurrent requirements of fairness and explainability regarding
high-stakes and high-dimensional decision-making systems. With the ongoing introduction of Al into the
genomics and medical-imaging domain, it is not only a technical condition but a moral necessity to make sure
that such technologies are ethical and including the population, as well as interpretable. This paper proposes this
by offering an adaptable explainable Al framework that reduces prejudice that still sheds light on its reasoning,
and thereby will make a positive contribution in developing trustable, generalizable, and equitable Al solution in
biomedical imaging genomics.

II. RELEATED WORKS

Artificial intelligence (AI), biomedical imaging, and genomics are emerging frontiers of research because
combining these fields has led to unrivaled prospects in predicting, diagnosing and individual therapy.
Nevertheless, with the advent of high-dimensional multi-omics and imaging data, scientists have increasingly
realized the adversarial problem of an algorithmic bias and inability to explain, which is detrimental to the clinical
pathway of the application of Al in the biomedical field because of its non-compliance to principles of fairness.
This section summarizes reviews of the overall relevant literature concerning these issues and emerging trends in
explainable Al (XAI) and bias mitigation topics to imaging genomics. Support vector machines and random
forests are examples of traditional machine learning models that have been successfully applied to genomic and
imaging data but do not generally identify a way to overcome the curse of dimensionality and provide native
interpretability [1]. Since the introduction of deep learning, convolutional neural networks (CNNs), autoencoders
and generative adversarial networks (GANs) have taken a giant leap in dominating the situation to be able to
automatically extract features from high-resolution MRI, CT, and PET scans and incorporate genomic information
to bio-markers discovery and subtyping of diseases [2], [3]. Nevertheless, such architectures tend to become black
boxes and the explanation of the reasons that underlie the choices remains unclear, particularly when one has to
deal with a network of thousands of features [4]. The exigency of explainability has resulted in the evolution of
model-agnostic approaches as SHAP, SHapley Additive exPlanations, LIME, Local Interpretable Model-Agnostic
Explanations, and Grad-CAM (Gradient-weighted Class Activation Map), supplying the neighborhood and
worldwide interpretations of model conduct [5]. SHAP, as an example, has been utilized in uncovering the effects
of certain mutations in the genome towards making cancer predictions and; Grad-CAM has been proven to be
utilized in identifying the areas of interest pertinent to space of an imaging task, like tumor localization [6], [7].
Although these techniques are very common they are often fixed, post-model, and fail to adapt to fluctuations in
input distributions and subpopulation differences. At the same time, the problem of the bias reduction in the
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biomedical Al has been put on the map. Even in the healthcare field, algorithmic bias may perpetuate systematic
inequities when the models are trained to learn using skewed datasets that underrepresent certain groups of people
due to ethnicity, gender, or age [8]. The study by Obermeyer et al. where the authors demonstrated how one of the
most popular healthcare algorithms has racial bias because it was based on proxy variables sparked a series of
works on identifying overlooked biases in clinical Al systems [9]. This problem is multiplied in the case of
imaging genomics where there is a diversity in acquisition devices, acquisition protocols and biologic diversity.
As another example, the models trained on The Cancer Genome Atlas (TCGA) or the Alzheimer Disease
Neuroimaging Initiative (ADNI) might not generalize to the datasets that represent the underrepresented
populations or hospitals with alternative imaging standards [10]. Recently suggested fairness-aware learning
algorithms incorporate constraints in training to prevent the negative effect of this disparity on the outcome of
predictions across groups with some property- attribute considered as protected. Methods including adversarial
debiasing, re-weighting the samples, and adding fairness loss functions are alternatives tested in fields of
dermatology and radiology [11]. In genomics, population structure where the ancestry affects the distribution of
alleles has a big effect; approaches have been derived to incorporate population stratification correction, so as to
find solutions by the time downstream machine learning is reached [12]. Nonetheless, existing methods tend to
address fairness and explainability as two independent issues, instead of which robust biomedical Al needs a
unified solution. New models are making an attempt to fill such a gap. Recently Chen et al. suggested an
unambiguous deep learning pipeline to classify glioma tumour based on radiogenomic features comprising of
autoencoders and SHAP-based interpretation to clarify germane genomic mutation and tumour localities [13]. In
a similar line, Singh et al. proposed a fairness-enhanced CNN applied to skin lesion analysis adding an adversarial
loss to reduce disparities in group performance with none or limited trade-off in interpretability via saliency maps
[14]. Such studies demonstrate the promise of integrated XAl-bias models but are still limited in being unable to
reflect the dynamics of data changes, which, on one hand, is the result of their static, non-adaptive nature, and on
the other, the key area of solution finding that is proposed by our adaptive framework. The second previously
active line of research concerns the dimensionality reduction of high-dimensional biological data. Visualization
and simplification of complex omics data is already extensively done using techniques like principal component
analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and
projection (UMAP) [15]. Nevertheless, the given methods tend to be unsupervised and fail to maintain the
discriminative features specific to the tasks or fairness limits. Most recently, variational inference and supervised
autoencoders have been used to preserve important features whilst dimensionally reducing it, but again are limited
by lack of interpretability unless supplemented with downstream XAl tools. Collectively, these associated works
highlight the disjointed state of solutions to the area in explaining how they address separate yet related problems
without a unified, adaptive framework which is not common in context to biomedical imaging genomics. Our
paper has tried to bridge this gap by suggesting a modular Al architecture that can learn simultaneously to de-bias
and produce some contextual explanations in the imaging-genomic modalities. Having fairness constraints built
into the optimization procedure serves to reflect the increasing general interest in transparent, ethical, and
population-inclusive Al in medicine, and introducing interpretable modules at each level, including feature
extraction and prediction, intends to make our method more trustworthy.

1II. METHODOLOGY
3.1 Data Acquisition and Preprocessing

These two publicly available large-scale biomedical datasets, The Cancer Genome Atlas (TCGA) and the
Alzheimer Disease Neuroimaging Initiative (ADNI), have rich collection of genome profiles and radiology
imaging associated with very rich clinical annotations. TCGA provided RNA sequencing data and somatic
mutation patterns mostly included cancer patients, whereas ADNI provided longitudinal imaging information,
including T 1 -weighted MRIs and PET scans linked to cognitive losses. The normalization of data was done using
TPM, and z-score to stabilize inter-sample variability. Data in the imaging was intensity adjusted, skull removed,
and there was affine registration of data to an MNI152 atlas in order to obtain consistency in the anatomy of the
subjects. Metadata about demographics (race, gender, and age) was kept and coded to track fairness when
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modeling. The problem of missing values, which was rather common across both clinical and genomic data, was
addressed through K-Nearest Neighbor (KNN) imputation to have a complete feature matrix before passing the
data through dimensionality reduction. This preprocessing pipeline made both modalities genomic and imaging
compatible to be integrated with their features evenly distributed, their spatial domain aligned and subgroup labels
still in use as advised in previous studies of multi-site harmonization [16].

3.2 Dimensionality Reduction Techniques

In order to tackle the computational difficulties of very high-dimensional data we have applied a matrix
dimensionality reduction hybrid approach. On the genomic data, of more than 20,000 genes per sample, we used
a deep autoencoder to zero in on a 100-dimensional latent representation that captured most of the variation in the
genes but removed any redundancy. The non-linear reduction technique allowed the analysis of faint interactions
between genes likely to be clinically significant. MRI and PET scans with a large number of voxel-wise features
(more than one million) were rendered in the imaging field as Principal Component Analysis (PCA) decreased
the computing burden, and later into a 3-dimensional manifold after Uniform Manifold Approximation and
Projection (UMAP) transformation. The application of PCA in conjunction with UMAP provided the possibility
of their explanation and maintaining the topological relationships between the imaging features. It then
standardized and merged these feature representations whose representations were lower in their level. The chosen
methods are moderate in terms of interpretability and performance, as it has been promoted in recent findings on
genomic imaging compression [17], [18].

Table 1: Dimensionality Reduction Summary

Data Modality Original Dimensions | Final Dimensions | Reduction Technique
Genomic (RNA-seq) | ~20,000 genes 100 Autoencoder
Imaging (MRI/PET) | ~1.2 million voxels 3 PCA — UMAP

3.3 Bias Identification and Fairness Metrics

The aspect of fairness auditing was also a part of the model development pipeline. We were interested in subgroup
gapings by race and gender and resorted to three well-known inequality benchmarks: Demographic Parity
Difference (DPD), Equal Opportunity Difference (EOD) and the Disparate Impact Ratio (DIR). These measures
quantified biases in probability of prediction, true positive, and outcome ratios across the two groups that were to
be legally protected, respectively. The stratification of datasets was used so that the representative distributions of
subgroups are achieved in training, validation, and testing splits. The training re-weighting of the loss functions
was based on the prosecuted subgroup imbalances that also penalized unfair distributions. Also, performance
indicators of each subgroup were constantly monitored in order to recognize algorithmic drift. These bias
measures are standard in recent fairness-sensitive machine learning literature, and are needed to make a high
stakes deployment in biomedicine [19].

Table 2: Fairness Metrics Definitions

Metric Name Description Ideal Value

Demographic Parity (DPD) | Difference in positive prediction rates between subgroups | 0

Equal Opportunity (EOD) | Difference in true positive rates between subgroups 0

Disparate Impact Ratio Ratio of positive predictions between subgroups 1.0
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3.4 Adaptive Explainable AI Model Design

The fundamental design formed in this study is an adaptive, multi-modal deep learning model, which combines
genomic and imaging characteristics and is being adjusted dynamically in bias. The model is constituted of two
parallel streams, one of which processes genomic latent embeddings of the autoencoder, and the other extracts
features on the imaging data using Convolutional Neural Network (CNN) backbone. These properties are
combined in a combined representation and transmitted to fully connected layers to be used in the downstream
prediction. Importantly, a fairness-sensitive penalty term is included to the loss criterion to penalize disparity
based on group during training. To enhance explainability, SHAP values were calculated on genomic inputs,
whereas Grad-CAM visualizations were generated on the imaging stream that can be visualized by the end-users
to see the molecular and anatomical effect on prediction. The interpretability outputs were dynamically reflected
back to the training in form of subgroup-sensitive sampling strategies to guarantee reliability and consistency
across categories of patients. The architecture is based on the recent advances in the ethical and explainable Al
field and offers modularity to handle other omics-imaging tasks [20].

Table 3: Model Component Overview

Component Role Methodology

CNN Backbone | Imaging feature extraction Convolutional layers

Autoencoder Genomic embedding generation Deep latent representation

Fusion Layer Combines genomic and imaging features | Concatenation + projection

Fairness Layer | Penalizes biased predictions Group-specific loss function

XAI Module Provides interpretability SHAP (genes), Grad-CAM (images)

3.5 Model Evaluation and Validation

The performance of the adaptive XAl model was evaluated using a multi-criteria framework including predictive
accuracy, fairness measures, and explanation fidelity. Classification tasks such as tumor type prediction and
cognitive status classification were assessed using metrics like accuracy, AUC, and F1-score. Regression tasks
predicting cognitive scores and survival times were evaluated using mean absolute error (MAE) and R-squared
values. Fairness metrics—DPD, EOD, and DIR—were recalculated on the test set to evaluate the model's post-
training equity. Explanation fidelity was assessed using explanation stability across subgroups and alignment with
domain knowledge. Furthermore, ablation studies were performed to isolate the contributions of the bias
mitigation layer and the XAI module. By removing these components individually and analyzing performance
drops, we quantified the independent utility of each part of the architecture. This evaluation protocol reflects best
practices in biomedical Al, where multi-dimensional validation is required for clinical readiness [21].

IV. RESULT AND ANALYSIS
4.1 Overview of Model Performance Across Tasks

The adaptive XAl model was tested in two main aspects of biomedical applications including tumor classification
based on TCGA datasets and prediction of cognitive status based on ADNI imaging-genomics. The model had
demonstrated a strong predictive ability both in terms of classification and regression goals. To classify tumors, it
had an accuracy of 91.6%, an AUC of 0.945 and an F1-score of 0.912, on the independent test set. Under the
effect of cognitive score regression, the model produced 3.6 points backlash on MMSE scale and R 2 of 0.81.
These findings confirm that the model performed well in generalization although the sources of data were highly
heterogeneous and dimensional [23].
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Explainable Al

Explain to Justify Explain to Control  Explain to Discover Explain to Improve

Figure 1: Explainable Al [25]
4.2 Genomic and Imaging Feature Contribution Analysis

In order to comprehend the role of the contribution made by each of the modalities, we ran experiments starting
with the analysis of individual genomic and imaging branches and in subsequent experiments, branch fusion. The
only imaging model gave a 86.7 classification accuracy level and the only genomics model obtained a level of
83.5. The fused model was much better with an accuracy of 91.6 with the synergetic worth of integration between
modalities. SHAP analysis showed the strongest effect of key genomic features, including TP53 mutations and
EGFR amplification on tumor prediction and that Grad-CAM heatmaps were localized around tumor edges and
atrophied areas in neurodegeneration cases. This synergy of dual modality proved the fact that structural and
molecular information when pooled together can be more informative and fruitful as it enhances much more
productive pathways of decision-making.

4.3 Impact of Bias Mitigation Layer

Once the fairness-aware loss mechanism was included, it was possible to record significant progress on the inter-
group equity front. The difference in the demographic parity between two tasks was decreased by 28 percent
(0.136 to 0.041), and the difference in the equal opportunity between the two tasks was reduced by 75 percent
(0.118 to 0.029). The Disparate Impact Ratio that was originally lopsided with the value of 1.28 became steady
with the expression of 1.06 after training regimes with group-dependant loss alterations. Such measures suggest
that the model was trained to redistribute its attention between populations that were overrepresented and
underrepresented in datasets but remained just as accurate. In addition, the intervention of fairness did not exert
much negative impact on performance, where the AUC decreased by less than halfa percent and this is acceptable
clinically.

Table 4: Fairness Metric Comparison Before and After Bias Mitigation

Metric Before Mitigation | After Mitigation
Demographic Parity Diff. | 0.136 0.041

Equal Opportunity Diff. 0.118 0.029

Disparate Impact Ratio 1.28 1.06
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4.4 Ablation Study on Key Architectural Components

The ablation tests were performed to analyze the effect of using the fairness and explainability modules separately.
Upon removal of fairness loss function, differences in subgroup accuracy re-emerged and difference in
demographic parity rose back to 0.12. Equally well, deactivating the XAl module proved to cause the attribution
output to be erratic between tests and it decreased the degree of confidence on the part of the clinicians in the
professional revie. The deletion of the fusion layer and single data modality decreased the accuracy of the
classification by 6.4 percent. In these experiments, it was made clear that all architectural elements played a key
role in making the model more fair, interpretable, and performing well.

Table 5: Ablation Study Results

Component Removed | Accuracy (%) | DPD | Explanation Stability (%)
None (Full Model) 91.6 0.041 | 87
Fairness Loss Removed | 91.8 0.120 | 89
XAI Module Removed | 91.5 0.043 | o1
Fusion Layer Removed | 85.2 0.038 | 76

4.5 Visualizations and Hotspot Mapping

Finally, spatial visualizations and feature saliency maps were generated to aid human interpretation of model
predictions. Grad-CAM visualizations consistently localized on tumor cores and edema zones in MRI scans of
glioblastoma patients, while false positive cases were often associated with peripheral tissue inflammation,
indicating possible misinterpretation of non-malignant swelling. In neuroimaging tasks, patients misclassified as
cognitively normal despite low MMSE scores showed diffuse activation patterns, suggesting early-stage
pathology that may not be visible at the macroscopic level. SHAP summary plots showed robust separation of
significant and insignificant genomic contributors across patient types. These visualizations provided actionable
insights to clinicians and served as a critical tool for model debugging and validation.

V. CONCLUSION
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With the concomitant growth of biomedical imaging and genomics, a new dawn of precision medicine, in terms
of the ability to gain greater phenotypic and genotypic descriptions of disease processes using multi-modal data,
is upon us. Whereas A.I. has shown virtually unlimited potential in utilizing these large and high-dimensional data
pools to predict, diagnose, and otherwise stratify patients, A.IL. has also revealed serious restraints in the concepts
of fairness and interpretability which are central pillars to the ethical and trustworthy application of machine
learning to medicine. In this paper, the authors solved both of these dilemmas by providing a framework in
biomedical imaging-genomics, adaptive explainable Al (XAI) model, which minimizes bias by maintaining
network explainability. The design proposed combined genomic and imaging factors in a dimensionality-reduced
structure with a multimodal combination framework, and with fairness-friendly volume modifications and
interpretable output modules with SHAP and Grad-CAM systems. With an intensive review through fairness
analysis in terms of tasks, subgroup fairness evaluation, stability in explanation, and clinical plausibility, the model
proved that fairness and explainability are not two ends of the same goal in which one is exclusive to the other,
but a pair of facets that requires a holistic combination to make up biomedical Al systems. With regards to
predictive performance, the model worked strongly across: classification area and regression area. It obtained
more than 91 percent precision and AUC values superior to 0.94 to discriminate tumor subtypes and smaller
mistake boundaries in cognitive score regression, demonstrating its ability to generalize well irrespective of how
heterogeneous and thick dimensional the input data were. Such great performances emphasize the potential of
deep learning when correctly trained on standardized and representative data. but even more than crudely high
predictive accuracy, what distinguished the proposed model was its intrinsic potential to screen and correct biases
in the algorithm itself the not exactly rare pitfall of Al implementation in genomics and medical imaging. The
addition of a fairness-penalizing-term to the optimization procedure of the model made the difference in
demographic parity and the disparity in equal opportunity become within acceptable levels without loss of
accuracy. This allowed distribution of performance to be fairer among demographic subgroups e.g. race and
gender which is an essential step towards the clinical acceptability and roll out of Al to diverse patient groups. Of
equal interest to us was the fact that the model produced reliable and clinically significant answers as to why it is
making the predictions. Genomic interpretations developed based on SHAP maximally allowed clinicians to trace
decisions directly to the expression of individual genes, many of which related to known biological oncogenesis
and neurodegeneration pathways. In a similar manner, Saliency maps, based on Grad-CAM imaging data were
able to identify the regions of interest, which aligned with radiologically marked pathology areas. Such
explanation mechanisms did not only improve trust in clinicians and domain experts, but also provided a useful
mechanism to discover potential artifacts or failure modes in the decision-making pipeline of a model. Moreover,
as the system integrated these interpretability functions with the architecture of learning directly, instead of adding
them as a post-act, they were also dynamic and adjusted with the training, which is a vital breakthrough in
establishing transparent Al that will be flexible in the face of changes in data distribution or patterns. The model
was also robust since, according to ablation tests, it showed a considerable loss of performance when one of its
most critical parts was removed: the fairness module, the fusion arch, or the interpretability layers. This is an
indication of the synergistic effect in which every part contributes towards the whole structure. Eradicating the
fairness layer gave rise to the resurgence of biasness where- as removing the XAI module gave rise to an unstable
and clinically un-trustworthy explanations. This cements the idea that effective bias mitigation and explainability
should be part and parcel of the model architecture rather than secondary side features. What is more, the fidelity
of explanation was stable across subgroups, which minimized the threat of explanation bias, an under-discussed
yet equally significant component of trustworthy Al. This study also focused on the importance of ethical
consideration and clinical validation with respect to developing a model. Model behavior could not be discarded
in any way since it was conducted fully with anonymized use of data and the provided expert human review to
evaluate the outputs of interpretability would keep the model conduct on a clinical scale. This kind of supervision
cannot be ignored in an instance where Al will be used in such a sensitive area as in the case of oncology or
neurodegeneration diagnosis. What is exceptional is that the outputs of the explanation have been not only stable
but also matched the domain expertise, so it introduces an element of reliability that is not typically found in
typical machine learning pipelines. Moreover, the framework of this research turns out to be flexible and modular,
which can be scaled to the rest of the diseases and modalities, stimulating wider universal uptake in clinical
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practice. Finally, the adaptive explainable Al model, proposed, and validated in the presented study proves that it
is possible and necessary to create machine learning systems that will be fair and easy to interpret in addition to
being high-performance. The discoveries introduce an important milestone in overcoming systemic biases and
opaque black-box strategies in biomedical Al especially in the areas of applications involving imaging and
genomic data that are of high dimensions. Because Al is increasingly being integrated into contemporary
healthcare, these combined solutions become essential to develop fairer, transparent, easily trustworthy medical
systems. Further research can apply this framework to an even larger and global datasets, reflect upon real-time
application to clinical use cases, and ask questions related to performance of these adaptive XAl approaches when
used in prospective trials. The open and complete acceptance of such interdisciplinary issues can help the sphere
to move in the direction of more humane, inclusive, and efficient Al-powered healthcare delivery.
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