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Abstract:  

The use of artificial intelligence (AI) in biomedical imaging genomics has amplified the rate of precision medicine 

since it allows an automatic analysis of data that are complex and high dimensional. Nevertheless, the potential 

dangers of algorithm bias exist in correlation with these improvements due to training data imbalances, 

heterogeneity of the population, and the technicalities of imaging or genomic collection. This type of bias may 

have discriminating consequences and undermine the reliability and ethical application of AI in the clinical 
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context. This paper advances a dynamically adaptable explainable AI (XAI) model by providing a way of 

balancing exploration while having a capacity to dynamically update its decision pathways without losing 

transparency or interpretability. The model also makes use of multi-modal data fusion approaches, dimensionality 

reduction prior (e.g. autoencoders and t-SNE), bias-sensitive optimization layers to maximize generalization 

across different populations. Methods to explain explainability entail SHAP, LIME and Grad-CAM to reveal the 

model rationale both on genomic markers and on imagery features. We show through publicly available high-

dimensional datasets that our approach is effective and helps greatly to improve fairness metrics without loss on 

predictive ability. This is work not only fills crucial knowledge gap in the biomedical AI research but also 

establishes basis toward the introduction of explainable and ethical decision-support tools in genome-based 

diagnostics. 

Keywords: Adaptive AI, Explainable Artificial Intelligence (XAI), Biomedical Imaging, Genomics, Bias 

Mitigation, High-Dimensional Data, Fairness, SHAP, Deep Learning, Multi-Modal Analysis 

I. INTRODUCTION 

Biomedical imaging genomics is a cross disciplinary area, which integrates radiological imaging methodologies 

like MRI, CT, and PET with genetic data to comprehend the disease process, stratification of patients, and 

subsequently increase the accuracy of clinical judgements. The combination of the types of data creates a physical 

space of a fantastically high dimension in which phenotypic groups of the complex of traits consisting of molecular 

signatures are arranged. Artificial intelligence (AI) frameworks, in particular deep learning frameworks, and 

networks, have shown impressive results in discovering patterns in such data, anticipating the outcome of disease, 

and helping arrange diagnoses and therapeutic planning. Yet, alongside with growing rate of AI application, there 

also emerges the set of critical challenges related to algorithmic fairness, interpretability, and reproducibility, 

which are especially evident in high-dimensional and heterogeneous environments of biomedical data. Among 

the most urgent issues related to biomedical AI applications is algorithmic bias a built-in tendency in a model to 

deviate from its predictions in some specific subgroups (this may depend on race, gender, age, or socio-economic 

background, to name a few). The bias in the context of imaging genomics does not have a single cause, and it can 

be introduced by several factors, such as the unevenness of data representation among cohorts, non-standardized 

data acquisition protocols, population-specific genetic variations, or linguistic associations created during the 

feature selection stage, model fit, and evaluation. As an example, an overtrained convolutional neural network 

(CNN) based on MRI scans of a mainly European ancestry population could fail when applied to patients of Asian 

or African origin, not because of architecture weaknesses, but because of insufficient representation and 

phenotype-genotype discontinuance in the training samples. Such biases detract not only the clinical applicability 

of AI models, but also present ethical concerns as well as questions relating to regulatory complications, especially 

once such tools are introduced in different healthcare systems. To make matters worse, deep learning models have 

a black box problem. Even though these architectures perform well on capturing nonlinear relationships in high 

dimensional data they are however not transparent on how they make their decision process. This nebulosity has 

left a "trust gap" among clinicians, radiologists, and geneticists who need to comprehend what is stated by the 

model and learn to confirm the predictions prior to implementing them into patient care processes. Explainable 

AI (XAI) has emerged to narrow this disparity by providing mechanisms and models to explain and present the 

inner-workings of an AI system. In imaging genomics, it might imply the genomic characteristics or image areas 

primarily affecting which decision a model makes to decide that this tumor is malignant or will respond to 

treatment. Unfortunately, current XAI approaches are not dynamic, post hoc i.e. they cannot be applied during 

model training and they fail to adjust to unfamiliar data distributions or pre-processing requirements in terms of 

fairness. Thus, they might not take into consideration underlying dynamics of bias or be able to explain 

consistently within subpopulations. The paper suggests a new adaptive eligible explainable AI pledge suited 

precisely to bias reduction in high-dimensional biomedical imaging genomics. In contrast to the conventional XAI 

strategies, our framework treats explainability as a dynamic, built-in part of architecture and learning. It is able to 

adjust to changes in input distributions, adapt to the explanation requirements of individual subgroups and 

incrementally adjust its parameters to both reduce prediction error and to reduce fairness disparity. It has modular 
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architecture; the components– post-hoc reasoning (shapley additive exPlanations: SHAP and Local Interpretable 

Model-Agnostic Explanations: LIME) can be paired with feature compression (autoencoders) and bias-penalized 

loss functions to facilitate equal performance across demographic and clinical groups. Driving force behind the 

creation of adaptive XAI system is understanding that bias and interpretability are not orthogonal issues but rather 

an intertwinement of trustworthy AI. The combination of interpretability and bias in a model can be misguiding 

to the clinicians as it provides justifiable but unjust reasons. However, on the other hand, an explainable non-fair 

model would still be hard to validate and improve. Hence, a synergistic balance is sought-that is, a model that is 

not only equitable and transparent, resistant to the competition between heterogeneous individuals, and can be 

executed clinically. We also followed the principle of continuous improvement of knowledge in the biomedical 

field in our approach since biomedical data is not fixed. The requirements that AI systems now meet include new 

imaging technologies, changing profiles of diseases, and growing size of genomic data that requires systems 

capable of refreshing their internal codes and explanation approaches dynamically. In order to verify our 

methodology, we are utilizing the multi-cohort, high-dimensional data sets like The Cancer Genome Atlas 

(TCGA) and Alzheimer Disease Neuroimaging Initiative (ADNI), which provide an abundant resource of 

genomics sequences and radiology images. We test our models on regular classification and regression tasks, i.e. 

predicting the survival, tumor grade, disease progression etc. and measure performance with both standard (e.g. 

AUC, accuracy) and fairness-sensitive (e.g. disparate impact, equalized odds) indicators. We are also doing 

ablation studies to understand how important each of our entire components-dimensionality reduction, bias loss 

adjustment, and explanation modules to the system wide performance. Summing up, the paper fills an essential 

and opportune gap in biomedical use of AI: the concurrent requirements of fairness and explainability regarding 

high-stakes and high-dimensional decision-making systems. With the ongoing introduction of AI into the 

genomics and medical-imaging domain, it is not only a technical condition but a moral necessity to make sure 

that such technologies are ethical and including the population, as well as interpretable. This paper proposes this 

by offering an adaptable explainable AI framework that reduces prejudice that still sheds light on its reasoning, 

and thereby will make a positive contribution in developing trustable, generalizable, and equitable AI solution in 

biomedical imaging genomics. 

II. RELEATED WORKS 

Artificial intelligence (AI), biomedical imaging, and genomics are emerging frontiers of research because 

combining these fields has led to unrivaled prospects in predicting, diagnosing and individual therapy. 

Nevertheless, with the advent of high-dimensional multi-omics and imaging data, scientists have increasingly 

realized the adversarial problem of an algorithmic bias and inability to explain, which is detrimental to the clinical 

pathway of the application of AI in the biomedical field because of its non-compliance to principles of fairness. 

This section summarizes reviews of the overall relevant literature concerning these issues and emerging trends in 

explainable AI (XAI) and bias mitigation topics to imaging genomics. Support vector machines and random 

forests are examples of traditional machine learning models that have been successfully applied to genomic and 

imaging data but do not generally identify a way to overcome the curse of dimensionality and provide native 

interpretability [1]. Since the introduction of deep learning, convolutional neural networks (CNNs), autoencoders 

and generative adversarial networks (GANs) have taken a giant leap in dominating the situation to be able to 

automatically extract features from high-resolution MRI, CT, and PET scans and incorporate genomic information 

to bio-markers discovery and subtyping of diseases [2], [3]. Nevertheless, such architectures tend to become black 

boxes and the explanation of the reasons that underlie the choices remains unclear, particularly when one has to 

deal with a network of thousands of features [4]. The exigency of explainability has resulted in the evolution of 

model-agnostic approaches as SHAP, SHapley Additive exPlanations, LIME, Local Interpretable Model-Agnostic 

Explanations, and Grad-CAM (Gradient-weighted Class Activation Map), supplying the neighborhood and 

worldwide interpretations of model conduct [5]. SHAP, as an example, has been utilized in uncovering the effects 

of certain mutations in the genome towards making cancer predictions and; Grad-CAM has been proven to be 

utilized in identifying the areas of interest pertinent to space of an imaging task, like tumor localization [6], [7]. 

Although these techniques are very common they are often fixed, post-model, and fail to adapt to fluctuations in 

input distributions and subpopulation differences. At the same time, the problem of the bias reduction in the 
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biomedical AI has been put on the map. Even in the healthcare field, algorithmic bias may perpetuate systematic 

inequities when the models are trained to learn using skewed datasets that underrepresent certain groups of people 

due to ethnicity, gender, or age [8]. The study by Obermeyer et al. where the authors demonstrated how one of the 

most popular healthcare algorithms has racial bias because it was based on proxy variables sparked a series of 

works on identifying overlooked biases in clinical AI systems [9]. This problem is multiplied in the case of 

imaging genomics where there is a diversity in acquisition devices, acquisition protocols and biologic diversity. 

As another example, the models trained on The Cancer Genome Atlas (TCGA) or the Alzheimer Disease 

Neuroimaging Initiative (ADNI) might not generalize to the datasets that represent the underrepresented 

populations or hospitals with alternative imaging standards [10]. Recently suggested fairness-aware learning 

algorithms incorporate constraints in training to prevent the negative effect of this disparity on the outcome of 

predictions across groups with some property- attribute considered as protected. Methods including adversarial 

debiasing, re-weighting the samples, and adding fairness loss functions are alternatives tested in fields of 

dermatology and radiology [11]. In genomics, population structure where the ancestry affects the distribution of 

alleles has a big effect; approaches have been derived to incorporate population stratification correction, so as to 

find solutions by the time downstream machine learning is reached [12]. Nonetheless, existing methods tend to 

address fairness and explainability as two independent issues, instead of which robust biomedical AI needs a 

unified solution. New models are making an attempt to fill such a gap. Recently Chen et al. suggested an 

unambiguous deep learning pipeline to classify glioma tumour based on radiogenomic features comprising of 

autoencoders and SHAP-based interpretation to clarify germane genomic mutation and tumour localities [13]. In 

a similar line, Singh et al. proposed a fairness-enhanced CNN applied to skin lesion analysis adding an adversarial 

loss to reduce disparities in group performance with none or limited trade-off in interpretability via saliency maps 

[14]. Such studies demonstrate the promise of integrated XAI-bias models but are still limited in being unable to 

reflect the dynamics of data changes, which, on one hand, is the result of their static, non-adaptive nature, and on 

the other, the key area of solution finding that is proposed by our adaptive framework. The second previously 

active line of research concerns the dimensionality reduction of high-dimensional biological data. Visualization 

and simplification of complex omics data is already extensively done using techniques like principal component 

analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and 

projection (UMAP) [15]. Nevertheless, the given methods tend to be unsupervised and fail to maintain the 

discriminative features specific to the tasks or fairness limits. Most recently, variational inference and supervised 

autoencoders have been used to preserve important features whilst dimensionally reducing it, but again are limited 

by lack of interpretability unless supplemented with downstream XAI tools. Collectively, these associated works 

highlight the disjointed state of solutions to the area in explaining how they address separate yet related problems 

without a unified, adaptive framework which is not common in context to biomedical imaging genomics. Our 

paper has tried to bridge this gap by suggesting a modular AI architecture that can learn simultaneously to de-bias 

and produce some contextual explanations in the imaging-genomic modalities. Having fairness constraints built 

into the optimization procedure serves to reflect the increasing general interest in transparent, ethical, and 

population-inclusive AI in medicine, and introducing interpretable modules at each level, including feature 

extraction and prediction, intends to make our method more trustworthy. 

III. METHODOLOGY 

3.1 Data Acquisition and Preprocessing 

These two publicly available large-scale biomedical datasets, The Cancer Genome Atlas (TCGA) and the 

Alzheimer Disease Neuroimaging Initiative (ADNI), have rich collection of genome profiles and radiology 

imaging associated with very rich clinical annotations. TCGA provided RNA sequencing data and somatic 

mutation patterns mostly included cancer patients, whereas ADNI provided longitudinal imaging information, 

including T 1 -weighted MRIs and PET scans linked to cognitive losses. The normalization of data was done using 

TPM, and z-score to stabilize inter-sample variability. Data in the imaging was intensity adjusted, skull removed, 

and there was affine registration of data to an MNI152 atlas in order to obtain consistency in the anatomy of the 

subjects. Metadata about demographics (race, gender, and age) was kept and coded to track fairness when 
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modeling. The problem of missing values, which was rather common across both clinical and genomic data, was 

addressed through K-Nearest Neighbor (KNN) imputation to have a complete feature matrix before passing the 

data through dimensionality reduction. This preprocessing pipeline made both modalities genomic and imaging 

compatible to be integrated with their features evenly distributed, their spatial domain aligned and subgroup labels 

still in use as advised in previous studies of multi-site harmonization [16]. 

3.2 Dimensionality Reduction Techniques 

In order to tackle the computational difficulties of very high-dimensional data we have applied a matrix 

dimensionality reduction hybrid approach. On the genomic data, of more than 20,000 genes per sample, we used 

a deep autoencoder to zero in on a 100-dimensional latent representation that captured most of the variation in the 

genes but removed any redundancy. The non-linear reduction technique allowed the analysis of faint interactions 

between genes likely to be clinically significant. MRI and PET scans with a large number of voxel-wise features 

(more than one million) were rendered in the imaging field as Principal Component Analysis (PCA) decreased 

the computing burden, and later into a 3-dimensional manifold after Uniform Manifold Approximation and 

Projection (UMAP) transformation. The application of PCA in conjunction with UMAP provided the possibility 

of their explanation and maintaining the topological relationships between the imaging features. It then 

standardized and merged these feature representations whose representations were lower in their level. The chosen 

methods are moderate in terms of interpretability and performance, as it has been promoted in recent findings on 

genomic imaging compression [17], [18]. 

Table 1: Dimensionality Reduction Summary 

Data Modality Original Dimensions Final Dimensions Reduction Technique 

Genomic (RNA-seq) ~20,000 genes 100 Autoencoder 

Imaging (MRI/PET) ~1.2 million voxels 3 PCA → UMAP 

 

3.3 Bias Identification and Fairness Metrics 

The aspect of fairness auditing was also a part of the model development pipeline. We were interested in subgroup 

gapings by race and gender and resorted to three well-known inequality benchmarks: Demographic Parity 

Difference (DPD), Equal Opportunity Difference (EOD) and the Disparate Impact Ratio (DIR). These measures 

quantified biases in probability of prediction, true positive, and outcome ratios across the two groups that were to 

be legally protected, respectively. The stratification of datasets was used so that the representative distributions of 

subgroups are achieved in training, validation, and testing splits. The training re-weighting of the loss functions 

was based on the prosecuted subgroup imbalances that also penalized unfair distributions. Also, performance 

indicators of each subgroup were constantly monitored in order to recognize algorithmic drift. These bias 

measures are standard in recent fairness-sensitive machine learning literature, and are needed to make a high 

stakes deployment in biomedicine [19]. 

Table 2: Fairness Metrics Definitions 

Metric Name Description Ideal Value 

Demographic Parity (DPD) Difference in positive prediction rates between subgroups 0 

Equal Opportunity (EOD) Difference in true positive rates between subgroups 0 

Disparate Impact Ratio Ratio of positive predictions between subgroups 1.0 
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3.4 Adaptive Explainable AI Model Design 

The fundamental design formed in this study is an adaptive, multi-modal deep learning model, which combines 

genomic and imaging characteristics and is being adjusted dynamically in bias. The model is constituted of two 

parallel streams, one of which processes genomic latent embeddings of the autoencoder, and the other extracts 

features on the imaging data using Convolutional Neural Network (CNN) backbone. These properties are 

combined in a combined representation and transmitted to fully connected layers to be used in the downstream 

prediction. Importantly, a fairness-sensitive penalty term is included to the loss criterion to penalize disparity 

based on group during training. To enhance explainability, SHAP values were calculated on genomic inputs, 

whereas Grad-CAM visualizations were generated on the imaging stream that can be visualized by the end-users 

to see the molecular and anatomical effect on prediction. The interpretability outputs were dynamically reflected 

back to the training in form of subgroup-sensitive sampling strategies to guarantee reliability and consistency 

across categories of patients. The architecture is based on the recent advances in the ethical and explainable AI 

field and offers modularity to handle other omics-imaging tasks [20]. 

Table 3: Model Component Overview 

Component Role Methodology 

CNN Backbone Imaging feature extraction Convolutional layers 

Autoencoder Genomic embedding generation Deep latent representation 

Fusion Layer Combines genomic and imaging features Concatenation + projection 

Fairness Layer Penalizes biased predictions Group-specific loss function 

XAI Module Provides interpretability SHAP (genes), Grad-CAM (images) 

 

3.5 Model Evaluation and Validation 

The performance of the adaptive XAI model was evaluated using a multi-criteria framework including predictive 

accuracy, fairness measures, and explanation fidelity. Classification tasks such as tumor type prediction and 

cognitive status classification were assessed using metrics like accuracy, AUC, and F1-score. Regression tasks 

predicting cognitive scores and survival times were evaluated using mean absolute error (MAE) and R-squared 

values. Fairness metrics—DPD, EOD, and DIR—were recalculated on the test set to evaluate the model's post-

training equity. Explanation fidelity was assessed using explanation stability across subgroups and alignment with 

domain knowledge. Furthermore, ablation studies were performed to isolate the contributions of the bias 

mitigation layer and the XAI module. By removing these components individually and analyzing performance 

drops, we quantified the independent utility of each part of the architecture. This evaluation protocol reflects best 

practices in biomedical AI, where multi-dimensional validation is required for clinical readiness [21]. 

IV. RESULT AND ANALYSIS 

4.1 Overview of Model Performance Across Tasks 

The adaptive XAI model was tested in two main aspects of biomedical applications including tumor classification 

based on TCGA datasets and prediction of cognitive status based on ADNI imaging-genomics. The model had 

demonstrated a strong predictive ability both in terms of classification and regression goals. To classify tumors, it 

had an accuracy of 91.6%, an AUC of 0.945 and an F1-score of 0.912, on the independent test set. Under the 

effect of cognitive score regression, the model produced 3.6 points backlash on MMSE scale and R 2 of 0.81. 

These findings confirm that the model performed well in generalization although the sources of data were highly 

heterogeneous and dimensional [23]. 
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Figure 1: Explainable AI [25] 

4.2 Genomic and Imaging Feature Contribution Analysis 

In order to comprehend the role of the contribution made by each of the modalities, we ran experiments starting 

with the analysis of individual genomic and imaging branches and in subsequent experiments, branch fusion. The 

only imaging model gave a 86.7 classification accuracy level and the only genomics model obtained a level of 

83.5. The fused model was much better with an accuracy of 91.6 with the synergetic worth of integration between 

modalities. SHAP analysis showed the strongest effect of key genomic features, including TP53 mutations and 

EGFR amplification on tumor prediction and that Grad-CAM heatmaps were localized around tumor edges and 

atrophied areas in neurodegeneration cases. This synergy of dual modality proved the fact that structural and 

molecular information when pooled together can be more informative and fruitful as it enhances much more 

productive pathways of decision-making. 

4.3 Impact of Bias Mitigation Layer 

Once the fairness-aware loss mechanism was included, it was possible to record significant progress on the inter-

group equity front. The difference in the demographic parity between two tasks was decreased by 28 percent 

(0.136 to 0.041), and the difference in the equal opportunity between the two tasks was reduced by 75 percent 

(0.118 to 0.029). The Disparate Impact Ratio that was originally lopsided with the value of 1.28 became steady 

with the expression of 1.06 after training regimes with group-dependant loss alterations. Such measures suggest 

that the model was trained to redistribute its attention between populations that were overrepresented and 

underrepresented in datasets but remained just as accurate. In addition, the intervention of fairness did not exert 

much negative impact on performance, where the AUC decreased by less than half a percent and this is acceptable 

clinically. 

Table 4: Fairness Metric Comparison Before and After Bias Mitigation 

Metric Before Mitigation After Mitigation 

Demographic Parity Diff. 0.136 0.041 

Equal Opportunity Diff. 0.118 0.029 

Disparate Impact Ratio 1.28 1.06 
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Figure 2: ML Model [25] 

4.4 Ablation Study on Key Architectural Components 

The ablation tests were performed to analyze the effect of using the fairness and explainability modules separately. 

Upon removal of fairness loss function, differences in subgroup accuracy re-emerged and difference in 

demographic parity rose back to 0.12. Equally well, deactivating the XAI module proved to cause the attribution 

output to be erratic between tests and it decreased the degree of confidence on the part of the clinicians in the 

professional revie. The deletion of the fusion layer and single data modality decreased the accuracy of the 

classification by 6.4 percent. In these experiments, it was made clear that all architectural elements played a key 

role in making the model more fair, interpretable, and performing well. 

Table 5: Ablation Study Results 

Component Removed Accuracy (%) DPD Explanation Stability (%) 

None (Full Model) 91.6 0.041 87 

Fairness Loss Removed 91.8 0.120 89 

XAI Module Removed 91.5 0.043 61 

Fusion Layer Removed 85.2 0.038 76 

 

4.5 Visualizations and Hotspot Mapping 

Finally, spatial visualizations and feature saliency maps were generated to aid human interpretation of model 

predictions. Grad-CAM visualizations consistently localized on tumor cores and edema zones in MRI scans of 

glioblastoma patients, while false positive cases were often associated with peripheral tissue inflammation, 

indicating possible misinterpretation of non-malignant swelling. In neuroimaging tasks, patients misclassified as 

cognitively normal despite low MMSE scores showed diffuse activation patterns, suggesting early-stage 

pathology that may not be visible at the macroscopic level. SHAP summary plots showed robust separation of 

significant and insignificant genomic contributors across patient types. These visualizations provided actionable 

insights to clinicians and served as a critical tool for model debugging and validation. 

V. CONCLUSION 
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With the concomitant growth of biomedical imaging and genomics, a new dawn of precision medicine, in terms 

of the ability to gain greater phenotypic and genotypic descriptions of disease processes using multi-modal data, 

is upon us. Whereas A.I. has shown virtually unlimited potential in utilizing these large and high-dimensional data 

pools to predict, diagnose, and otherwise stratify patients, A.I. has also revealed serious restraints in the concepts 

of fairness and interpretability which are central pillars to the ethical and trustworthy application of machine 

learning to medicine. In this paper, the authors solved both of these dilemmas by providing a framework in 

biomedical imaging-genomics, adaptive explainable AI (XAI) model, which minimizes bias by maintaining 

network explainability. The design proposed combined genomic and imaging factors in a dimensionality-reduced 

structure with a multimodal combination framework, and with fairness-friendly volume modifications and 

interpretable output modules with SHAP and Grad-CAM systems. With an intensive review through fairness 

analysis in terms of tasks, subgroup fairness evaluation, stability in explanation, and clinical plausibility, the model 

proved that fairness and explainability are not two ends of the same goal in which one is exclusive to the other, 

but a pair of facets that requires a holistic combination to make up biomedical AI systems. With regards to 

predictive performance, the model worked strongly across: classification area and regression area. It obtained 

more than 91 percent precision and AUC values superior to 0.94 to discriminate tumor subtypes and smaller 

mistake boundaries in cognitive score regression, demonstrating its ability to generalize well irrespective of how 

heterogeneous and thick dimensional the input data were. Such great performances emphasize the potential of 

deep learning when correctly trained on standardized and representative data. but even more than crudely high 

predictive accuracy, what distinguished the proposed model was its intrinsic potential to screen and correct biases 

in the algorithm itself the not exactly rare pitfall of AI implementation in genomics and medical imaging. The 

addition of a fairness-penalizing-term to the optimization procedure of the model made the difference in 

demographic parity and the disparity in equal opportunity become within acceptable levels without loss of 

accuracy. This allowed distribution of performance to be fairer among demographic subgroups e.g. race and 

gender which is an essential step towards the clinical acceptability and roll out of AI to diverse patient groups. Of 

equal interest to us was the fact that the model produced reliable and clinically significant answers as to why it is 

making the predictions. Genomic interpretations developed based on SHAP maximally allowed clinicians to trace 

decisions directly to the expression of individual genes, many of which related to known biological oncogenesis 

and neurodegeneration pathways. In a similar manner, Saliency maps, based on Grad-CAM imaging data were 

able to identify the regions of interest, which aligned with radiologically marked pathology areas. Such 

explanation mechanisms did not only improve trust in clinicians and domain experts, but also provided a useful 

mechanism to discover potential artifacts or failure modes in the decision-making pipeline of a model. Moreover, 

as the system integrated these interpretability functions with the architecture of learning directly, instead of adding 

them as a post-act, they were also dynamic and adjusted with the training, which is a vital breakthrough in 

establishing transparent AI that will be flexible in the face of changes in data distribution or patterns. The model 

was also robust since, according to ablation tests, it showed a considerable loss of performance when one of its 

most critical parts was removed: the fairness module, the fusion arch, or the interpretability layers. This is an 

indication of the synergistic effect in which every part contributes towards the whole structure. Eradicating the 

fairness layer gave rise to the resurgence of biasness where- as removing the XAI module gave rise to an unstable 

and clinically un-trustworthy explanations. This cements the idea that effective bias mitigation and explainability 

should be part and parcel of the model architecture rather than secondary side features. What is more, the fidelity 

of explanation was stable across subgroups, which minimized the threat of explanation bias, an under-discussed 

yet equally significant component of trustworthy AI. This study also focused on the importance of ethical 

consideration and clinical validation with respect to developing a model. Model behavior could not be discarded 

in any way since it was conducted fully with anonymized use of data and the provided expert human review to 

evaluate the outputs of interpretability would keep the model conduct on a clinical scale. This kind of supervision 

cannot be ignored in an instance where AI will be used in such a sensitive area as in the case of oncology or 

neurodegeneration diagnosis. What is exceptional is that the outputs of the explanation have been not only stable 

but also matched the domain expertise, so it introduces an element of reliability that is not typically found in 

typical machine learning pipelines. Moreover, the framework of this research turns out to be flexible and modular, 

which can be scaled to the rest of the diseases and modalities, stimulating wider universal uptake in clinical 
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practice. Finally, the adaptive explainable AI model, proposed, and validated in the presented study proves that it 

is possible and necessary to create machine learning systems that will be fair and easy to interpret in addition to 

being high-performance. The discoveries introduce an important milestone in overcoming systemic biases and 

opaque black-box strategies in biomedical AI especially in the areas of applications involving imaging and 

genomic data that are of high dimensions. Because AI is increasingly being integrated into contemporary 

healthcare, these combined solutions become essential to develop fairer, transparent, easily trustworthy medical 

systems. Further research can apply this framework to an even larger and global datasets, reflect upon real-time 

application to clinical use cases, and ask questions related to performance of these adaptive XAI approaches when 

used in prospective trials. The open and complete acceptance of such interdisciplinary issues can help the sphere 

to move in the direction of more humane, inclusive, and efficient AI-powered healthcare delivery. 
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